Synthesis and Anti-HIV Activity of Substituted 1,2,4-Triazolo-thiophene Derivatives

Yaseen A. Al-Soud

Department of Chemistry, College of Science, University of Al al-Bayt, Al-Mafraq, Jordan Received 7 September 2006; revised 26 September 2006

ABSTRACT: A new series of substituted 1,2,4triazoles bearing thiophene molecules **8** and **10** has been synthesized from cycloaddition of thiophene 3and 2-carbonitriles **5** and **9**, respectively, with the reactive cumulene intermediates **4**. The newly synthesized products have been evaluated for their anti-HIV activity. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:443–448, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20319

INTRODUCTION

Several biologically active therapeutics contain fivemembered heterocycles in their chemical structures. The 1,2,4-triazole moiety is present, for example, in certain antiasthmatic [1], antiviral (ribavirin) [2], antifungal (fluconazole) [3], antibacterial [4], and hypnotic [5] (triazolam) drugs. Owing to its broad spectrum of biological activity [6–12], the 1,2,4-triazole ring system represents an attractive target for the elaboration of solid-phase synthesis and the production of combinatorial libraries.

RESULTS AND DISCUSSION

Recently, the short-lived reactive intermediates 1-(chloroalkyl)-1-aza-2-azoniaallene salts (4) were used by Jochims and coworkers [13] in the syn-

Contract grant number: 331 4 04 131.

thesis of various 1,2,4-triazole compounds via cycloaddition with various unsaturated precursors in the presence of SbCl₅. In our recent work, these cations have been utilized in the synthesis of new types of 1,2,4-triazoles such as C-nucleosides [14,15], acyclic *C*-nucleosides [16], pyrimidines [17], N-alkylphthalimides [18], D-mannopentitol-1yl-1,2,4-triazoles [19], 1H-indoles [20], quinolones [20], benzotriazoles [21], 3'-triazolo-thymidines [22], acetic acid alkylidene hydrazides [23], and 1,4-disubstituted piperazines [24,25]. The reactive intermediates (4) were obtained from the α, α' dichloroazo compounds 3 [13] by treatment with SbCl₅ at -60° C. At approximately -30° C, the colour changed from orange to brown, indicating that cumulenes **4a-d** underwent cycloaddition reactions with nitrile 5 to give inseparable 1.2.4-triazolium hexachloroantimonates 6a-d. After increase in the temperature above -30° C, compounds 6a-d rearranged via [1,2]-migration [26,27] of the alkyl group at C-3' to N-5' accompanied by the elimination of CR¹R²Cl group at N-1' leading to the protonated 1,5-dialkyl-3-((thiophene-3yl)methyl)-1*H*-1,2,4-triazolium salts **7a-d**. In situ deprotonation of salts **7a-d** with aqueous NaHCO₃ and NH₃ solution gave the desired products **8a-d** in 70%–86% yield (Scheme 1). Similarly, compounds **10b-d** were obtained successively from the cycloaddition of 4 with the nitrile 9 in 74%-82% yield (Scheme 2). The structures of the newly prepared compounds were determined by their ¹H and ¹³C NMR and by mass spectra.

Compounds **8a–d** were identified by the ¹H and ¹³C NMR spectra, which are in agreement with those of the triazole analogues obtained previously [14–25]. The CH₂ signal appeared as a singlet at the

Correspondence to: Yaseen A. Al-Soud; e-mail: alsoud@ rocketmail.com.

Contract grant sponsor: Deutscher Akademischer Austausch Dienst.

SCHEME 1 Reagents and conditions: (i) $SbCl_5$, CH_2Cl_2 , $-60^{\circ}C$; (ii) CH_2Cl_2 , -60 to $23^{\circ}C$; (iii) $NaHCO_3$, NH_3 , MeCN, $0^{\circ}C$, 2 h.

region $\delta_{\rm H}$ 3.93–4.17 ppm. The alkyl groups at N-1' and C-5' of the triazole ring were assigned. The ¹³C NMR spectra of compounds **10a–d** contained similar resonance signals of the triazole ring carbons C-2' and C-5'. The chemical shifts between $\delta_{\rm C}$ 161.8 and 159.3 ppm were assigned to the (C-2'). The lower field signals at $\delta_{\rm C}$ 150.4–157.7 ppm were attributed to C-5'. The other carbons were fully analyzed (Experimental section).

Similarly, the 1,5-dialkyl-3-((thiophene-2-yl)methyl)-1*H*-1,2,4-triazoles **10b–d** were prepared by cycloaddition of the intermediates **4** with nitrile

9 in the presence of $SbCl_5$ in 77%, 85%, and 70% yields, respectively (Scheme 2).

Next, our work is extended by using substituted thiophene to synthesize new derivatives of triazolo-substituted thiophenes and evaluation of their anti-HIV inhibitory activity in comparison to those of the unsubstituted thiophenes **8a– d** and **10b–d**. Thus, compound **12** was prepared in 78% yield by applying the same method used previously (Scheme 3). The structure of **12** was determined from ¹H NMR, ¹³C NMR, and mass spectra.

SCHEME 2

In Vitro Anti-HIV Assay

Compounds **8a–d**, **10b–d**, and **12** were tested for their in vitro anti-HIV-1 (strain III_B) and HIV-2 (strain ROD) activity in human T-lymphocyte (MT-4) cells. The results are summarized in Table 1, in which the data for efavirenz [28] and capravirine [29] are included for comparison purposes. Compound **10c** was found to be the only compound in the series inhibiting HIV-1 and HIV-2 replication in cell culture. Compound **10c** showed an inhibition against HIV-1 and HIV-2 with EC₅₀ of 2.40 and 2.50 μ g/mL and CC₅₀ of >125.0 μ g/mL, respectively, resulting in a selectivity index of >52 and >51, respectively. These data encouraged us to modify the structures of these molecules by substation of the thiophene residue with more potential groups.

EXPERIMENTAL

Melting points are uncorrected and measured on Büchi melting point apparatus B-545 (BÜCHI Labortechnik AG, Switzerland). Microanalytical data were collected using Vario, Elementar apparatus (Shimadzu). NMR spectra were recorded at 250 and 600 MHz (¹H) and at 150.91 MHz (¹³C) spectrometers (Bruker, Germany) in CDCl₃ with TMS as an internal standard. The signal assignments for protons were identified by selective proton decoupling. Mass spectra were recorded on 70 eV EI and FAB

SCHEME 3

	1 <i>1</i> 0	EC ₅₀	CC ₅₀	
Compound	Virus Strain	(µg/mL)+	(μg/mL) ^s	SI
8a	III _B	>125.0	125.0	<1
	ROD	125.0	125.0	<1
8b	III _B	>74.0	73.1 ± 2.1	<1
	ROD	>69.9	73.1 ± 2.1	<1
8c	III _B	>119.0	<u>≥</u> 119.0	<u>≤</u> 1
	ROD	>125.0	≥ 119.0	<u>≤</u> 1
8d	III _B	>84.5	94.0 ± 9.9	<1
	III _B	>86.7	94.0 ± 9.9	<1
10b	III _B	>75.4	76.8 ± 4.0	17
	ROD	>72.3	76.8 ± 4.0	<1
10c	III _B	2.4	>125.0	>52
	ROD	2.5	>125.0	>51
10d	III _B	>73.2	73.8 ± 1.4	<1
	ROD	>72.7	73.8 ± 1.4	<1
12	III _B	>98.6	98.8	<1
	ROD	>88.5	98.8	<1
Efavirenz [28]	III _B	0.003	40	13,333
Capravirine [29]	III _B	0.0014	11	7,857

TABLE 1 In Vitro Anti-HIV-1* and HIV-2^{\dagger} Activity of Some New Triazolo-thiophenes

*Anti-HIV-1 activity measured with strain III_B.

[†]Anti-HIV-2 activity measured with strain ROD.

[‡]Compound concentration required to achieve 50% protection of MT-4 cells from the HIV-1- and 2-induced cytopathogenic effect.

 $^{\$}$ Compound concentration that reduces the viability of mock-infected MT-4 cells by 50%.

SI: Selectivity index (CC₅₀/EC₅₀).

MAT 8200 spectrometery (Finnigana MAT, USA), using nitrobenzyl alcohol or glycerol as matrices.

Preparation of 1,3,5-Trisubstituted 1,2,4-Triazoles Bearing a 3-(Thiophene-3-ylmethylene) or 3-(Thiophene-2-ylmethylene) Group (**8**, **10**, and **12**)

General procedure: To a stirred, cooled $(-60^{\circ}C)$ solution of the required azo compound **3** (5.0 mmol) [13] and thiophene carbonitrile 5, 9, or 11 (5.0 mmol) in dry CH₂Cl₂ (20 mL) was added dropwise a solution of SbCl₅ (3.0 mmol) in dry CH₂Cl₂ (30 mL). The solution was left with stirring at -60° C for 1 h, then at 0°C for 1 h and finally at 23°C for 10 min., followed by addition of pentane (50 mL). The precipitated solid was dissolved in MeCN (40 mL), cooled to 0°C followed by addition of NaHCO₃ aqueous solution (2.52 g, 30 mmol in 30 mL of water) and NH₃ solution (2 mL). The mixture was stirred at 23°C for 2 h, then the organic solvent was evaporated and the residue was extracted with $CHCl_3$ (3 × 20 mL). The combined organic extracts were dried (Na₂SO₄), filtered, and evaporated to dryness and the residue was recrystallized from EtOH or CHCl₃-pentane, and the oily compounds were purified on a SiO₂ column.

1,5-Dimethyl-3-((thiophene-3-yl)methyl)-1H-1,2, 4-triazole (**8a**). From **3a** (0.92 g) and the nitrile **5**. Yield: 0.81 g (83%); mp 77–80°C. ¹H NMR (CDCl₃)δ: 7.29–7.04 (m, 3H, H-2, H-4, H-5 of thienyl ring); 4.00 (s, 2H, CH₂); 3,74 (s, 3H, N–CH₃); 2.39 (s, 3H, CH₃). ¹³C NMR (CDCl₃) δ : 161.2 (C-3); 152.4 (C-5); 138.2, 128.3, 125.3, 121.5 (thienyl-C); 28.3 (CH₂, N-Me); 11.7 (C₅-Me). Anal. calc. for C₉H₁₁N₃S (193.27): C, 55.93; H, 5.74; N, 21.74. Found: C, 55.73; H, 5.55; N, 21.49. MS *m*/*z* (%) (EI): 193 (85).

1-Isopropyl-5-methyl-3-((thiophene-3-yl)methyl)-1H-1,2,4-triazole (**8b**). From **3b** (1.20 g) and the nitrile **5**. Yield: 0.87 g (78%); brown oil. ¹H NMR (CDCl₃) δ: 701–6.76 (m, 3H, H-2, H-4, H-5 of thienyl-H); 4.29–4.23 (m, 1H, *CH*Me₂); 4.09 (s, 2H, CH₂); 2.28 (s, 3H, C₅-Me); 1.34 (d, 6H, J = 8.0 Hz, CHMe₂). ¹³C NMR (CDCl₃) δ: 159.8 (C-2'), 150.4 (C-5'), 140.1, 126.6, 125.1, 123.5 (thienyl-*C*); 49.4 (N–*CH*Me); 29.5 (CH₂); 21.7 (N–*CHMe*₂); 11.2 (C₅–*CH*₃). Anal. calc. for C₁₁H₁₅N₃S (221.32): C, 59.69; H, 6.83; N, 18.99. Found: C, 59.44; H, 6.62; N, 19.17. MS *m*/*z* (%) (EI): 221 (80).

5,6,7,8-*Tetrahydro*-2-((*thiophene*-3-*yl*)*methyl*-[1,2,4]*triazolo*[1,5-*a*]*pyridine* (**8c**). From **3c** (1.17 g) and the nitrile **5**. Yield: 0.82 g (75%); mp 81–84°C. ¹H NMR (CDCl₃) δ: 7.28–7.01 (m, 3H, H-2, H-4, H-5 of thienyl-H); 4.08 (t, 2H, J = 5.0 Hz, CH₂-5'); 4.03 (s, 2H, CH₂); 2.86 (t, 2H, J = 5.0 Hz, CH₂-8'); 2.08–1.91 (m, 4H, CH₂-6', CH₂-7'). ¹³C NMR (CDCl₃) δ: 161.8 (C-2'), 152.7 (C-9'), 138.2, 128.4, 125.3, 121.6 (thienyl-*C*); 46.6 (C-5'); 29.5 (CH₂); 23.5 (C-8'); 22.8 (C-7'); 20.0 (C-6'). Anal. calc. for C₁₁H₁₃N₃S (219.31): C, 60.24; H, 5.97; N, 19.16. Found: C, 60.01; H, 5.68; N, 19.36. MS *m*/*z* (%) (EI): 219 (85).

6,7,8,9-Tetrahydro-2-((thiophene-3-yl)methyl-5H-[1,2,4]triazolo[1,5-a]azepine (8d). From 3d (1.32 g) and the nitrile 5. Yield: 1.00 g (86%); brown oil. ¹H NMR (CDCl₃) δ : 7.08–6.82 (m, 3H, H-2, H-4, H-5 of thienyl-H); 4.13 (t, 2H, J = 6.0 Hz, CH₂-5'); 4.00 (s, 2H, CH₂); 2.85 (t, 2H, J = 6.0 Hz, CH₂-9'); 1.81–1.18 (m, 6H, CH₂-6', CH₂-7', CH₂-8'). ¹³C NMR (CDCl₃) δ : 159.3 (C-2'), 157.4 (C-10'), 140.0, 126.7, 125.6, 124.0 (thienyl-C); 50.9 (C-5'); 28.6 (CH₂); 27.3 (C-7'); 27.2 (C-9'); 24.7 (C-8'); 22.5 (C-6'). Anal. calc. for C₁₂H₁₅N₃S (233.33): C, 61.77; H, 6.48; N, 18.01. Found: C, 61.51; H, 6.68; N, 18.28. MS m/z (%) (EI): 233 (80).

1-Isopropyl-5-methyl-3-((thiophene-2-yl)methyl)-1H-1,2,4-triazole (10b). From **3b** (1.20 g) and the nitrile **9**. Yield: 0.85 g (77%); brown oil. ¹H NMR (CDCl₃) δ : 723–6.97 (m, 3H, H-2, H-4, H-5 of thienyl-H); 4.41–4.33 (m, 1H, *CH*Me₂); 4.02 (s, 2H, CH₂); 2,38 (s, 3H, C₅–Me); 1.46 (d, 6H, *J* = 8.0 Hz, CH*M*e₂). ¹³C NMR (CDCl₃) δ : 160.9 (C-3'), 150.8 (C-5'), 138.4, 128.3, 125.4, 123.2 (thienyl-*C*); 49.7 (N–*C*HMe₂); 29.4 (CH₂); 22.2 (N–CH*M*e₂);.11.8 (C₅–*M*e). Anal. calc. for C₁₁H₁₅N₃S (221.32): C, 59.69; H, 6.83; N, 18.99. Found: C, 59.51; H, 6.58; N, 19.09. MS *m*/*z* (%) (EI): 221 (80).

5,6,7,8-*Tetrahydro*-2- (*thiophene*-2-*yl*) *methyl*-[1,2,4]*triazolo*[1,5-*a*]*pyridine* (**10c**). From **3c** (1.17 g) and the nitrile **9**. Yield: 0.93 g (85%); brown oil. ¹H NMR (CDCl₃) δ: 7.15–6.82 (m, 3H, H-2, H-4, H-5 of thienyl-H); 4.17 (s, 2H, CH₂); 4.02 (t, 2H, J = 6.0 Hz, CH₂-5'); 2.84 (t, 2H, J = 6.0 Hz, CH₂-8'); 2.02–1.84 (m, 4H, CH₂-6', CH₂-7'). ¹³C NMR (CDCl₃) δ: 160.1 (C-2'), 152.5 (C-9'), 139.3, 127.1, 126.9, 125.1 (thienyl-*C*); 46.8 (C-5'); 28.5 (CH₂); 23.1 (C-8'); 22.5 (C-7'); 19.9 (C-6'). Anal. calc. for C₁₁H₁₃N₃S (219.31): C, 60.24; H, 5.97; N, 19.16. Found: C, 60.41; H, 5.76; N, 19.31. MS *m*/*z* (%) (EI): 219 (80).

6,7,8,9-*Tetrahydro*-2-(*thiophene*-2-*yl*)*methyl*-5*H*-[1,2,4]*triazolo*[1,5-*a*]*azepine* (**10d**). From **3d** (1.32 g) and the nitrile **9**. Yield: 0.82 g (70%); brown oil. ¹H NMR (CDCl₃) δ : 7.24–6.97 (m, 3H, H-2, H-4, H-5 of thienyl-H); 4.11 (t, 2H, J = 5.0 Hz, CH₂-5'); 3.93 (s, 2H, CH₂); 2.84 (t, 2H, J = 5.0 Hz, CH₂-9'); 1.85–1.18 (m, 6H, CH₂-6', CH₂-7', CH₂-8'). ¹³C NMR (CDCl₃) δ : 159.4 (C-2'), 157.1 (C-10'), 137.7, 128.3, 125.2, 121.6 (thienyl-C); 50.8 (C-5'); 29.9 (CH₂); 28.2 (C-7'); 27.2 (C-9'); 26.9 (C-8'); 24.6 (C-6'). MS *m*/*z* (%) (EI): 233 (90).

(4-((5,6,7,8-Tetrahydro-[1,2,4]triazolo[1,5-a]pyridine-2-yl)methyl)thiophene-2-yl)(4-nitro-phenyl)methanone (**12**). From **3c** (1.17 g) and the nitrile **11** (1.36 g) [30]. Yield: 1.43 g (78%); brown oil. ¹H NMR (CDCl₃) δ: 8.27 (d, 2H, J = 8.2 Hz, Ar–H); 7.93 (d, 2H, J = 8.2 Hz, Ar–H); 7.63 (s, 1H, thienyl-H); 7.58 (s, 1H, thienyl-H); 4.05 (m, 4H, CH₂-5', CH₂); 2.87 (t, 2H, J = 6.0 Hz, CH₂-8'); 2.03–1.91 (m, 4H, CH₂-6', CH₂-7'). ¹³C NMR (CDCl₃) δ: 186.0 (C=O), 159.3 (C-2'), 152.6 (C-10'), 149.8, 143.2, 142.5, 136.6, (Ar–C); 138.8, 132.4, 129.9, 123.6 (thienyl-C); 47.1 (C-5'); 28.8 (CH₂); 23.3 (C-8'); 22.6 (C-7'); 19.8 (C-6'). Anal. calc. for C₁₈H₁₆N₄O₃S (368.41): C, 58.68; H, 4.38; N, 15.21. Found: C, 58.42; H, 4.46; N, 15.41. MS *m*/*z* (%) (EI): 368 (90).

ACKNOWLEDGMENTS

I thank Professor N. Al-Masoudi, Konstanz, Germany, for helpful discussion and Professors

E. De Clercq and Ch. Paneccoque, Rega Institute for Medical Research, Belgium, for the anti-HIV screening.

REFERENCES

- Naito, Y.; Akahoshi, F.; Takeda, S.; Okada, T.; Kajii, M.; Nishimura, H.; Sugiura, M.; Fukaya, C.; Kagitani, Y. J Med Chem 1996, 39, 3019–3029.
- [2] De Clercq, E. J Clin Virol 2004, 30, 115–133.
- [3] Chen, C.; Dagnino, R.; Huang, C. Q.; McCarthy, J. R.; Grigoriadis, D. E. Bioorg Med Chem Lett 2001, 11, 3165–3168.
- [4] Wadsworth, H. J.; Jenkins, S. M.; Orlek, B. S.; Cassidy, F.; Clark, M. S. G.; Brown, F.; Riley, G. J.; Graves, D.; Hawlins, J.; Naylor, C. B. J Med Chem 1992, 35, 1280–1290.
- [5] Jenkins, S. M.; Wadsworth, H. J.; Bromidge, S.; Orlek,
 B. S.; Wyman, P. A.; Riley, G. J.; Hawkins, J. J Med
 Chem 1992, 35, 2392–2406.
- [6] Burrell, G.; Evans, J. M.; Hadley, M. S.; Hicks, F.; Stemp, G. Bioorg Med Chem Lett 1994, 4, 1285–1290.
- [7] Tully, W. R.; Gardner, C. R.; Gillespie, R. J.; Westwood, R. J Med Chem 1991, 34, 2060–2067.
- [8] Thompson, S. K.; Eppley, A. M.; Frazee, J. S.; Darcy, M. G.; Lum, R. T.; Tomaszeck, T. A.; Ivanoff, L. A.; Morris, J. F.; Sternberg, E. J.; Lambert, D. M.; Fernandez, A. V.; Petteway, S. R.; Meek, T. D.; Metcalf, B. W.; Gleason, J. G. Bioorg Med Chem Lett 1994, 4, 2441–2446.
- [9] Duncia, J. V.; Santella, J. B.; Higley, C. A.; VanAtten, M. K.; Weber, P. C.; Alexander, R. S.; Kettner, C. A.; Pruitt, J. R.; Liauw, A. Y.; Quan, M. L.; Knabb, R. M.; Wexler, R. R. Bioorg Med Chem Lett 1998, 8, 775– 780.
- [10] Al-Soud, Y. A.; Wirschum, W.; Hassan, N. A.; Maier, G-M.; Jochims, J. C. Synthesis 1998, 721–728.
- [11] Al-Masoudi, N. A.; Hassan, N. A.; Al-Soud, Y. A.; Schmidt, P.; Gaafer, A. E-D.; Weng, M.; Marino, S.; Schoch, A.; Amer, A.; Jochims, J.C. J Chem Soc Perkin Trans 1, 1998, 947–953.
- [12] Al-Soud, Y. A.; Al-Masoudi, W. A.; El-Halawa, R. A.; Al-Masoudi, N. A. Nucleosides Nucleotides 1999, 18, 1985–1994.
- [13] Al-Masoudi, N. A.; Al-Soud, Y. A.; Geyer, A. Tetrahedron, 1999, 55, 751–758.
- [14] Al-Soud, Y. A.; Al-Masoudi, N. A. Pharm Pharm Med Chem 1999, 332, 143–144.
- [15] Al-Soud, Y. A.; Al-Masoudi, N. A. Pharmazie 2001, 56, 372–375.
- [16] Al-Masoudi, N. A.; Al-Soud, Y. A.; Lagoja, I. Carbohydr Res 1999, 318, 67–74.
- [17] Al-Soud, Y. A.; Al-Masoudi, N. A. Org Prep Proced Int 2002, 49, 658–664.
- [18] Al-Soud, Y. A.; Al-Masoudi, N. A.; Ferawnah, A. E-R. Bioorg Med Chem 2003, 11, 1701–1708.
- [19] Al-Soud, Y. A.; Al-Masoudi, N. A. Heteroatom Chem 2003, 14, 298–303.
- [20] Al-Soud, Y. A.; Al-Dweri, M. N.; Al-Masoudi, N. A. Farmaco 2004, 59, 775–783.
- [21] Al-Soud, Y. A.; Al-Masoudi, N. A. Farmaco 2004, 59, 41–46.
- [22] Al-Soud, Y. A.; Qalalweh, M. N. A.; Al-Sa'doni, H. H.; Al-Masoudi; N. A. Heteroatom Chem 2005, 16, 28–32.

- [23] Wang, Q.; Jochims, J. C.; Köhlbrandt, St.; Dahlenburg, L.; Al-Talib, M.; Hamed, A.; Ismail, A. E. Synthesis 1992, 710–718.
- [24] Wang, Q., Al-Talib, M.; Jochims, J.C. Chem Ber 1994, 127, 541–547.
- [25] Young, S. D.; Britcher, S. F.; Tran, L. O.; Payne, L. S.; Lumma, W. C.; Lyle, T. A.; Huff, J. R.; Anderson, P. S.; Olsen, D. B.; Carroll, S. S.; Pettibone, D. J.; Obrien, J. A.; Ball, S. K.; Balani, R. G.; Lin, J. H.; Chen, I. W.; Schlief, W. A.; Sardana, V. V.; Long, W. J.; Byrnes, V.

W.; Emini, E. A. Antimicrob Agents Chemother 1995, 39, 2602–2605.

- [26] Fujiwara, T.; Sato, A.; El-Farrash, M.; Miki, S.; Kabe, K.; Isaka, Y., Kodama, M.; Wu, Y.; Chen, L. B.; Harada, H.; Sugimoto, H.; Hatanaka, M.; Hinuma, Y. Antimicrob Agents Chemother 1998, 42, 1340– 1345.
- [27] Kruse, L.I.; Ladd, D.L.; Harrsch, P.B.; McCabe, F.L.; Mong, S-M.; Fauucette, L.; Johnson, R. J Med Chem 1989, 32, 409–417.